
Best'
AvailIable

Copy

AD-A283 392

Network Interface Specification

for the T1 Microprocessor

DTICELECTEj

AUG 1 5 1994 Timothy J. Callahan
timothycOCS.Berkeley.EDU

F

ITWOs documnt ha~s been appzoyg
fm public releose and s.g ifnSdistribution is unumi*&l

94-25582

Report No. UCB//CSD-94-823

May 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720

94 8 12 115
•U,; .,• "• -

Network Interface Specification
for the T1 Microprocessor ,t

Timothy J. Callahan
timothycQOS.Berke1ey.EDU

May 1994 -

Abstract

The overall performance of a multicomputer depends heavily on the interface be-
tween the software and the communication hardware. As pointed out in von Eicken's
thesis, this communication architecture should be versatile in that it be able
to mst a variety of different communication models, including shared mem-

-. ed and send&receive; it should support an efficient implementation of
each model; and it should be incremental in that it shouldn't interfere with the
computation performance of the processor.

Active Messages communication architectures have bern shown to satisfy these
criteria. Software implementations of Active Messages have reduced communication
overhead by over an order of magnitude to near the minimum possible given existing
hardware. This project takes the next step and defines a hardware implementation
of an Active Message communication architecture, resulting in another order of
magnitude reduction in communication overhead.

The Active Message communication architecture defined in this report is an
extension to the MIPS-I1 instruction set architecture. The resulting architecture
features data transfer directly to/from processor registers, hardware dispatch directly
to Active Message handlers (along with limited context preservation), automatic
atomicity of handlers, cheap synchronization operations, and hardware support for
multicast.

"This report was submitted in partial satisfaction of the requirements for the author's M.S. degree.
tThis research is supported in part by a National Science Foundation Graduate Fellowship, Grant

URI-N00014-92-J-1672 from the Office of Naval Research, and National Science Foundation Infrastruc-
tare Coant number CDA-S722188. Additional support comes from the International Computer ScienceIns"itu~te

. i

Contents

1 Introduction 1

2 Active Messages 3

2.1 The Main ldea 3
2.2 Support of Communication Models 4

2.2.1 Shared Memory and Split-C 5

2.2.2 Meuss-Driven Models 7

2.2.3 Conclusion 8

2.3 Four Key Issues 8

3 Implementation Choices 9

3.1 Overview 9

3.2 Context 10

3.3 Data Transfer 11

3.4 Synchronization 16

3.5 Send Failure 17

3.6 Network Virtualization 19

3.7 Protection 20

3.8 Events vs. Exceptions 20

3.9 Extensions 21

3.10 Conclusion 24

4 Previous Research 25

5 Concurrent Work 26

6 Conclusion 26

6.1 Acknowledgements 27

Bibliography 27

Appendix A: Network Interface Specification 30

1 Introduction

Continuing improvements In VLSI technology, apparent in the outstanding perfor-
mance/price ratios for microprocessor., have spurred the development of massively par-
alwl processors, which are cmntructed by taking dozens to thousands of microprocessors
and connecting them with an interprocessr communication network. While the network
represents additional complexity and cost, solutions have been engineered that result in
high-performance machines that for many applications provide performance/price ratios
superior to those of traditional supercomputers.

The easiest way to build a massively parallel system is to physically distribute the mem-
ory among the processors. Essentially the nodes are similar to a modern workstations,
with a dedicated, high-bandwidth, low-latency network connecting them. Such dis-
tributed memory systems grow to large size more gracefully than systems where all the
memory is located in one central location.

The software running on each node must have some way of accessing the communication
network. This interface, as seen by the compiler or assembly language programmer, is
called the communication architecturel (see Figure 1). The functions defined by the
communication architecture are implemented by some combination of hardware, kernel
code, run-time systems, and library routines.

The communication architecture is distinguished from the communication micro-
architecture, which is composed of the implementation-specific details of the data transfer
functional units, interconnect structure, and network operation.

Application Layer
Communication Model

Communication Architecture
Communication Micro-architecture

Communication Hardware

Figure 1: Communication Layers

The functionality provided by the communication architecture is typically used by a
parallel language (or extensions to a sequential language) to provide a communication
model to the application programmer. An example of a communication model is shared
memory, in which the application programmer sees a global address space. In this model
communication is performed by one processor writing to a memory location and another
processor reading from that location.

"The ddnition of this term, as well as most of the ideas contained in this section, ane taken from
Thorsten von Eicken's Ph.D. thesis, [vEO3].

a

Traditional communication architectures have often been overambitious and have tried
to do too much; they try to provide functionality that belongs more appropriately in the
communication model layer. By fixing a specific model in the communication architec-
ture, a semantic clash is risked. A semantic dash occurs when an interface provides a
certain high-level function, but the client needs slightly different functionality and there-
fore cannot use the provided function. If the interface succeeds in providing truly general
high-level functions, usually there is a performance penalty for clients that don't need
all the functionality.

For example, consider a communication architecture that provides only a shared-memory
abstraction to higher levels, but is built on top of a packet-based interconnection network.
The [KJA+93J study found that many applications require communication operations
that are less efficiently implemented with shared-memory than with message-passing. For
these operations, the shared-memory layer is a hindrance; the messaging efficiency of the
underlying hardware has been hidden. A semantic clash has occurred: the abstraction
provided does not match exactly what the application needs, and moreover prevents the
efficient construction of the abstraction the application does need.

Another example is the general send&receive mechanism, which typically requires the
use of buffers in the kernel address space. The kernel buffers are required because a send
may be performed before the user on the receiving node has allocated its own buffer
for the data. However, applications that have pre-allocated the buffers still pay the
cost of copying data between buffers in kernel and user space. Here again, the general
mechanism gets in the way of efficient use of the resources.

These examples give insight into which design criteria should be used for judging commu-
nication architectures. A well-designed communication architecture should be versatile
enough so that it can support many different communication models; it should be ef-
ficient in that the operations of each communication model should map efficiently to
the primitives provided; and it should be incremental in that it does not disrupt the
versatility and efficiency of the sequential architecture.

Active Messages communication architectures [vE93], described in the next section, have
been show to satisfy these criteria. Active Messages exposes the efficiency of the underly-
ing communication micro-architecture as much as possible, and doesn't make the mistake
of trying to implement functions that really belong in a communication model.

Active Message communication architectures implemented in software on top of existing
communication micro-architectures have been successful in reducing the software over- 0
head of communication by more than an order of magnitude. It seems unlikely that any
further improvement can be made as long as the network interface is implemented as ex-
ternal circuitry complementing a standard microprocessor. In fact, if the current trend
in microprocessor design continues, first- and second-level caches will increasingly be
integrated on-chip; an external network interface will be pushed logically farther from
the CPU core, and the cost of communication will increase. The most direct way to Cods

Sl or

2 DISI ,tcial
SAd

--- . .• . . ,

counteract this tread Is to Integrate Active Messages with the processor instruction set
architecture.

In this project, an Active Messages c munication architecture implementation is de-
fined competely In the actual Instruction set of a microprocessor, Le. zero or minimal
kernel, run-time, or library code is required to complete the Active Message layer. Per-
haps this could also be interpreted as the design of a communication micro-architecture
such that an Active Message communication architecture maps to it in a direct, almost
trivial, way. The resulting network interface exhibits very low overhead for all commu-
nication operations, including sending messages, receiving messages and dispatching to
the appropriate handler, and disabling message reception to form critical sections.

The rest of this report is organized as follows. Section 2 describes why Active Messages
makes a good communication architecture. Section 3 describes and justifies the design
decisions made in this implementation of Active Messages. In Section 4 this implemen-
tation is compared to previous research involving the integration of a network interface
into a CPU. Section 5 describes ongoing research related to the implementation of the
architecture described in this report. A brief conclusion is found in Section 6, which is
followed by the bibliography, and finally the network interface specification in detail is
found in Appendix A.

2 Active Messages

2.1 The Main Idea

"Active Messages" is a philosophy, or class of communication architectures, analogous to
the term "RISC" for a class of computational architectures. To quote from [vECGS92]
(see also Figure 2),

Active Messages is an asynchronous communication mechanism intended to
expose the full hardware flexibility and performance of modern interconnec-
tion networks. The underlying idea is simple: each message contains at its
head the address of a user-level handler which is executed on message ar-
rival with the message body as argument. The role of the handler is to get
the message out of the network and into the computation ongoing on the
processing node. The handler must execute quickly and to completion.

For some parallel operations, enough may be known about the communication patterns
that increased performance can result from breaking some of the Active Message con-
ventions - for example, by performing some real computation in an Active Message
handler. While such use of the architecture described in this report is possible, the
design has been optimized for conventional Active Messages.

3

&

Node A: Node B:

II

Figure 2: Active Message in the CNS-1. The primary computation on Node B is asynchronously
interrupted, and control is transferred to the address contained in the first word of the message
(hdIr). The code at Adlr takes care of integrating the message data (D) with the primary com-
putation.

2.2 Support of Communication Models

An Active Messages communication architecture, just like a RISC instruction set, is not
meant for direct use by the application programmer. Rather, Active Messages is meant
to be used by a parallel language or communication library to provide a communication
model to the application programmer. Active Messages has been shown to efficiently
support most common communication models. This section contains examples of how
Active Messages can support both shared memory and dataflow models, and point out
where hardware support for Active Messages is especially useful. The goal of this sub-
section is to justify hardware support for Active Messages, based upon two points:

1. that performance will benefit significantly from hardware support of Active Mes-
sages, and

2. that the Active Message communication architecture can support most communi-
cation models efficiently, and thus there is no loss of flexibility by implementing it
in hardware.

Earlier examples demonstrated that trying to support any more functionality than that
provided by Active Messages in hardware is often a mistake. The conclusion to be drawn

4

is that Active Messages is an optimal communication interace to fix between hardware
and software.

2.2.1 Shared Memory and Splt-C

Split-C [CDG+93I, a parallel extension to C developed at UC Berkeley, is a good example
of the use of Active Manages to support a shared-memory programming model. The
description here is based on the Implementation of Split-C for Thinking Machines' CM-5,
which is similar to the version envisioned for the CNS-l. However, Split-C has been
ported to widely varying architectures with accordingly varying Implementations, as
described in [Lun94].

In the Split-C model, there is one persistent thread per processor. Split-C uses a global,
two-dimensional address space; each global address is a <proceuor, offset> pair. Global
pointers can be dereferenced Just as normal pointers in C can, so that *gp = lv copies
the contents of local variable lv to the location specified by the global pointer gp. The
reverse operation is performed by 1v a *gp. Normal (local) pointers are still available
and should be used for work local to a processor, since accesses through global pointers
will incur an extra cost to check whether the location is local or remote, even if the
location is local.

Split-C also allows for split-phase assignments as shown in later examples, allowing the
overlap of global operations with local computation. Simple counters are used to deduce
when all operations have completed for synchronization purposes.

Split-C is implemented as a modification of the GCC compiler along with a runtime
system. The runtime system for Split-C consists of a collection of library routines and
Active Message handlers, contained in Libsplit-C.

For example, consider Processor A performing a put (an asynchronous, acknowledged
write) to a location contained in Processor B's memory. During parsing the Split-
C compiler replaces the put syntax, *gv :a lv, with an Active Message send. Thus
Processor A actually sends a put Active Message containing the value and address to
Processor B. Processor A returns to computation immediately. The put handler on Pro-
cessor B writes the value contained in the message to the specified location, and then
sends a put reply message back to Processor A. On Processor A the put reply handler
for this message increments a counter to acknowledge the completion of the put. Some
time later Processor A may execute a sync call, which busy-waits on the counter until
all puts have been acknowledged (non-blocking checks of the counter are also possible).

Support for more complex shared memory operations is also straightforward using Active
Messages. A fetch-and-add operation, for example, is implemented using a fetch-and-
add handler on the node containing the counter (see Figures 3, 4). Note that since
Active Message handlers execute to completion, no special effort is required to ensure

5

* L

Node A: Node B:

Figure 3: Fetch-and-Add, Part One. Node A has sent a request message containing both a
pointer to the fetch-and-add request handler (fa) and a pointer to the desired counter on Node B
(loc). In the picture, Node B is in the process of handling the request but has not replied yet.

Node A: Node B:

IP

Figure 4: Fetch-and-Add, Part Two. The reply message containing the value from Node B
(tmp) has been received at Node A, where a reply handler has been invoked. The reply handler
stores the value and sets a flag. After the reply handler has completed, the primary computation
on Node A notices that the flag has been set, and then can use the returned value.

6

the atomicity of the fetch-and-add operation.

In addition to these Integer or floating point variable remote memory operations, Split-
C also provides bulk transfer primitives, which are optimized for medium to large data
transfers.

Benefit of Hardware Support

In comparison to software implementations, the low overhead of hardware dispatch to
the Active Message handler greatly reduces the number of cycles consumed for handling
messages, leaving more cycles for the primary computation. (For comparison, the total
overhead using CMAM on the CM-5 for sending, receiving, and dispatching to handler
for a 5-word message is approximately 100 cycles, while with the Ti the total overhead is
expected to be less than 10 cycles for any message size up to the maximum of 37 words.)
A related benefit is that round-trip latencies are greatly reduced, meaning that it will be
easier for the Split-C programmer to find computation to overlap with remote memory
accesses. Even when applications need fine-grained data sharing, hardware support of
Active Messages combined with Split-C's exposure of local vs. global references will allow
performance to approach that possible with a hardware-implemented shared-memory
model2 , while allowing much greater flexibility. Coarse-grain computations also benefit
from hardware support; the bulk transfer primitives will be able to use vector Active
Messages (described in the next section), which can transfer up to 32 words of data with
the same small overhead.

Another advantage is that a Split-C compiler knowledgeable of the hardware support for
Active Messages will be able to make optimizations that cannot typically be made if the
communication operations are encapsulated in library routines.

2.2.2 Message-Driven Models

Active Messages running on conventional microprocessors has also been shown to sup-
port message-driven computation models at least as efficiently as processors designed
specifically to support those models. This is made possible by the use of the Threaded
Abstract Machine (TAM) model as a compilation target for datadow-style languages
[CGSvE93J. TAM exposes the scheduling of threads to the compiler. Related threads in
the same activation frame share the same processor state. By scheduling related threads
consecutively, the overhead of thread switching is greatly reduced, while the benefits of a
large register file and RISC instruction set are available to the threads. Such intelligent
scheduling would likely not be possible if the general thread scheduler were built into
the hardware.

2This will not be true in cases where coherent caches are very beneficial, such as when data is written
once and then read several times by another random processor. Software caching can be useful in
some cases, but will not give the same level of performauce as would be achieved with hardware cache
coherence.

7

In the TAM implementation, Active Messages are used for data movement and the
associated synchronization typical of data•low. The tailored Active Message handler
stores the data at a specified offset in a specified frame, records this action in a counter,
and possibly performs a scheduling operations if a thread becomes enabled. The Active
Message handler itself does not perform the computation, and thus does not require
much context preserving overhead. In TAM, events affecting scheduling occur often, but
do not cost much. Scheduling actions (changing threads) occur less often but still do not
cost much, and finally frame switches occur relatively rarely.

Benefit of Hardware Support

The paper [SGS+93] evaluated support mechanisms for TAM and came to the conclusions
that hardware support can significantly improve performance as long as the interaction
of all components is considered. Specifically, integrating the network interface with the
processor register file and supporting fast dispatch to user-level handlers can both signifi-
cantly reduce communication overhead (a first-order effect for fine-grained computation),
as long as the operations for synchronization and atomicity are similarly efficient. This
lends support to the claim that thoughtful hardware support for Active Messages will
lead to significant performance benefits for fine-grained computation.

2.2.3 Conclusion

In this subsection a brief description has been given of how Active Messages can effi-
ciently support two of the common communication models. By providing a dean, simple
mechanism rather than attempting a complete solution, Active Messages allows each
programming model to use the native communication resources in the way best suited
for it. This combination of efficiency and flexibility make Active Messages an optimal
platform to fix in hardware. Putting any more functionality in hardware would reduce
flexibility and risk a semantic clash, without much performance benefit. Putting less
functionality in hardware would reduce performance without giving a significant gain in
flexibility.

2.3 Four Key Issues

As mentioned above, Active Messages describes a class of communication architectures.
In fully describing a specific communication architecture implementation based on Active
Messages, the designer must address four key issues concerning the relationship to the
underlying communication micro-architecture:

* Data Transfer into and out of the network

* Synchronization between message arrival and computation

8

"* how to deal with Send Malur. due to network congestion, without risking dead-
lock

"* Network Vu-tu. s tion - how to share the network between multiple user pro-
ceases

If the Active Message communication architecture is implemented as a software layer
on top of existing hardware, the resolution of these issues is heavily influenced by the
communication micro-architecture of the machine. In the case here, there exists the
luxury that design of the communication micro-architecture can be guided by the desired
Active Message communication architecture that it will support. This gives the freedom
to make choices regarding the four main issues based on overall performance, rather
than having to contort the Active Messages communication architecture to fit existing
hardware. In the next section, the choices made will be examined in detail.

3 Implementation Choices

In designing a communication architecture based on Active Messages, there are a number
of key issues to be addressed. Von Eicken lists them as data transfer, synchronization,
send failure, and network virtualization. The choices made in the handling of these
issues, along with additional implementation choices regarding the dispatch mechanism
and multicast support, are described and justified below. First, however, a brief summary
of how the communication architecture fits into the MIPS-11 instruction set architecture
will be given, followed by a short description of the context of this project.

3.1 Overview

This projects defines a communication architecture to extend the MIPS-H instruction
set architecture [Kan881. The network interface is logically part of a coprocessor. In the
specification in the appendix, coprocessor 2 (COP2) is used; this is an arbitrary choice
and may be changed. Other specific details such as instruction encoding and network
interface control register numbering may also change.

New instructions for sending messages and returning from handlers have been added in
the coprocessor opcode space. Existing MIPS instructions are used for transfers to and
from network interface control registers, and for branching on the coprocebaor condition
flag. The MIPS-II ISA specification states that coprocessor operations should not affect
CPU state, and that data transfer between the CPU and the coprocessor should occur
only through MFCz/MTCz instructions. These specifications are not strictly followed;
violations include:

9

"* CPU control flow is asynchronously preempted due to the arrivals of messages and
other events.

"* Arriving data is accessible in CPU registers, and outgoing data is taken directly
from CPU registers.

"* Some of the CPU registers have been triplicated; which copy is visible to the
processor depends on the context: primary computation, request handler, or reply
handier.

To give a very brief t mmary of how inter-processor communication works, a processor's
SEND instruction constructs and sends a packet containing (i) a header indicating the
destination node, (ii) a pointer to the desired handler for the message on the destination
processor, and (iii) data from processor registers. At the destination node, the arrival of
the packet causes an inlet event, which (all in hardware) saves a portion of the current
state of the processor, places the data from the packet into the appropriate processor
registers, and starts execution of the handler specified in the packet. The handier is ended
by an HRET instruction, which returns the processor to its state before preemption.
Message reception can be disabled by clearing an event enable bit in a coprocessor
control register, allowing cheap construction of critical sections. While message reception
is disabled, messages will back up in the network interface an I eventually back up in the
network.

3.2 Context

This project is one small component of the construction of the CNS-l Connectionist
Network Supercomputer, a large-scale multicomputer being constructed with the target
application of neural network algorithms.

The building block of the CNS-1 is the Ti microprocessor, an implementation of the
Torrent architecture. This architecture integrates a MIPS scalar processor core along
with a fixed-point vector unit, the network interface described in this report, and a mesh
router3 The Ti processor has 128b-wide path to the local memory on the CNS-1 node.
The memory will be high-performance DRAM, such as Rambus or Synchronous-DRAM,
providing a large memory bandwidth.

The topology of the CNS-1 data network is & two-dimensional mesh that wraps around in
one of the dimensions. This topology maps directly to its physical packaging, a cylindrical

3Although the TI has integrated the router to achieve better density on the CNS-I node, a alternative

implementation would have a single network Bak leaving the processor, which would connect to a separate
routing chip, as with the *T project [PBGB93]. This would allow the same processor to be used with a
variety of different network topologies and technologies, and also reduce the main chip's pin requirements
for the network, with only a small latency penalty.

I0

7. 7

Four Torent Torrent

Hydrant Y
Hoop

Ouad Tonrent Module TO Disk Subsystem
To Host Workstation

To Analog YO

Figure 5: CNS-1

tower (see Figure 5). I/O to the computing nodes is performed through special interface
nodes along the bottom of the cylinder. In addition to the data network, there is a
diagnostic network which is accessible to the kernel only.

Although the CNS-1 is being built with the main goal of performing neural network
algorithms at supercomputer speeds, it should find a broad range of applications. The
TI processor contains a standard MIPS processor core (although some software emulation
is required for IEEE floating point), and the network interface specified in this report is
general purpose. Since this design will be implemented as a real machine, the advantages
and disadvantages of this communication architecture can be quantitatively compared
against others in the context of real applications and operating systems, providing new
insight for parallel systems design.

3.3 Data 1Tansfer

One of the major points of an Active Message implementation is the data placement
- where it is sent from and where it arrives, as seen by the user. There are many
possibilities regarding which part of the storage hierarchy data is transferred from/to.
From closest to farthest from the CPU, end points of data transfer can be:

11

"* processor registers

"* coprocessor registers

"* data cache

"* memory-mapped I/0 - the network interface is mapped into the memory space of
the processor, and is accessed using load/store instructions (bypassing the cache).

"* memory buffers (i.e. DMA) - the processor gives the network interface the address
of a buffer In memory; then the network interface autonomously accesses the buffer
over the memory bus while the processor continues its computation (arbitration
between the processor and network interface for the memory bus is required).

In [HJ921 the performance differences between these various options were quantitatively
studied. They found that sending and receiving messages from processor registers re-
suited in the best performance. Moving the data back and forth to coprocessor registers
would likely require an additional cycle per word at each end of the transfer. Cache
and memory-mapped end-points of data transfer incur additional costs for accessing
busses. If the data's ultimate source and destination are CPU registers, then a DMA
data transfer will add even more latency for accessing memory.

Not surprisingly, having to go through the kernel to access the network interface incurred
an additional substantial penalty.

The study also noted that random-access mechanisms were superior to FIFO mecha-
nims, especially when replying to messages or forwarding them. This is because with
thoughtful design of message formats, much of the data can be reused without being
moved. Also, an immediate send retry is trivial since the message data is still there; just
execute the SEND instruction again. With a FIFO interface, the entire message may
have to be pushed out to the network interface again.

Transferring data to/from processor registers, while providing the best performance, is
the most intrusive to the microprocessor architecture, requiring a new chip design; the
other schemes can be implemented by adding external circuitry to a normal commodity
microprocessor. A related drawback of the intrusion is its impact upon the use of exist-
ing software tools. For example, is might be that a handful of registers would have to be
reserved for incoming data, and thus be off-limits for computation - not only would com-
putational performance suffer from not having as many registers available, but compilers
would have to be altered.

Despite these potential difficulties, it was decided to transfer data directly to/from pro-
cessor registers for the sake of performance. The demands of supporting both fine-
and coarse-grained parallelism, along with the increasing computational performance of
microprocessors, necessitate an on-chip network interface. In particular, the T1 micro-

12

-.

processor with its vector unit requires a similarly high-performance network interface to
remain balanced.

The registers used for data transfer are the four argument-passing registers and the frame
pointer register, by MIPS convention. A SEND instruction uses the contents of (the
currently visible copies of) these registers to construct the data portion of the outgoing
packet. Upon packet arrival, the scalar data of the packet is placed directly into those
registers. The use of the argument-passing registers highlights the similarity between
Active Messages and RPC calls (the key differences are that Active Message handlers
neither perform serious computation nor automatically return a result). The addition
of the frame pointer extends this to a remote closure invocation for use in object-based
programming - the object, the method, and the arguments are specified in the message.

In order that an arriving message does not overwrite data being used by the primary
computation, there are additional copies of the registers used for data transfer (see
Figures 6 and 7, and also Figures 3 and 4). Which set of these registers are visible, i.e.
mapped into the register file, depends on the context of the CPU: primary computation,
request handler, or reply handler (request vs. reply is discussed in Subsection 3.5). At the
point when control is dispatched to a message handler, the message data is transferred
into the the register set of the new context. Restrictions on handler nesting prevent
a message from overwriting a previous message before it has been used; this is further
discussed in Subsection 3.5. When the handier ends and control is returned to the
previous computation, the registers of the previous context once again become visible. A
request handler can compose a new reply message (possibly reusing data from the request
message it is handling) without having to preserve the registers it uses. In addition to
the registers used for data transfer, two temporary registers are also replicated for use
by handlers, and their contents are preserved between handler calls.

This scheme has two distinct performance benefits. Handlers will not have to perform
callee-saving of register contents to memory as long as they can operate within the
replicated register subset (this should be true, since Active Message handlers are not
supposed to perform any substantial computation). Also, handlers do not have to load
incoming message data from coprocessor registers, memory, or memory-mapped I/O -
the data is immediately usable in computation. Yet primary computation sees no dif-
ference in its register file - sequential efficiency will not suffer, and existing compilers
can be used. The resulting communication architecture is both efficient and incremen-
tal: low overhead communication has been achieved without disturbing the sequential
architecture.

Note that the majority of the CPU registers are still shared between the main code and
the handier code; this allows an intimate coupling between the primary computation and
the handlers, which was found to be important in the [SGS+93] study.

One interpretation of this design is that arriving message data is placed in coprocessor
registers, and that these registers are mapped into the CPU register address space for

13

4

1G* vWIqtm i uh

whM l CPUs a
16 pi-t-~ b-a

- * Whom CPU h iscw~

2 4 e x a m p i n g a b i & p i at i t y

elew - WMW b

31!

Figure 6: CPU register file, extended with multiple copies of some registers.

Node A: Nop e B:

0 (mD.)
0 0

Figure 7: Data transfer. The dark-shaded copies of registers are not accessible in the states

shown (register $29 not shown to simplify picture).

14

the duration of the handler. If this mapping were not implemented, then the design
would degenerate to the lesm intrusive but le effidcint design using coprocessor registers
for data tranfer endpolnts.

In the TI m orocessor, the vector unit provides an extension to this mechanism for
large data transers. In addition to the 5 words from the CPU registers, a send can
optionally Include the contents of a vector register (up to 32 words) in the message being
sent. At the receiving node, the data appears in vector register $vr1. Again, each event
context (primary computation, request handler, and reply handler) has its own copy
of this register to prevent live data from being overwritten. The high-bandwidth path
between the vector unit and the memory system makes vector load-send-receive-store a
very efficient way of performing the transfer of large data blocks between the memories
on different nodes.

Also, large multi-message data transfers are simplified by the fact that the architecture
guarantees in-order delivery of messages between any pair of nodes. The implementation
of the CNS-1 network, which uses dimension-order routing on a two-dimensional mesh,
guarantees this behavior. Even so, it was not clear that it should be part of the specifi-
cation, because a different implementation may wish to use adaptive routing or multiple
virtual channels on the mesh, or perhaps even change the topology to a fat-tree network,
none of which can guarantee in-order delivery. However, in a project performed jointly
between the graduate computer architecture and VLSI design classes at UC Berkeley
it was shown that packet reordering can be performed efficiently in hardware in the
network interface [GWC93J. Thus even if a new network transport mechanism delivers
packets out-of-order, in-order delivery as seen by the software can be guaranteed with
the addition of some circuitry.

By transferring data directly to/from processor registers, problems with cache inco-
herency are avoided. The main processor and the coprocessors all access memory through
the same cache, so that they have a consistent view of memory. Since any multiple copies
of data on different nodes are created explicitly in software, the burden of consistency
management in such cases is also in software. A somewhat related problem, however,
may occur if the compiler for the primary computation does not take the actions of han-
dlers into account. For example, consider a situation where the primary computation is
busy-waiting on a flag that will be set by a handler:

$L1: lv $6, flag($ap)
nop
beq $6, $0, $L1
nOp

An optimizing compiler, seeing that location fl•g is not modified within the loop, might
move the load outside of the loop:

15

I $6, fl3ag(*p)
MOP

$L1: be" *. $,. $L1
nop

Now even when the handler writes a non-aero value to location flag in memory, the
primary computation will not an it. The most straightforward way of avoiding this
situation in C is to declare the variable filag to be volatile. This tells the compiler
that the value of the variable may change in ways not known to the compiler, and will
prevent the compiler from making op leading to Incorrect behavior. Better
yet, the compiler should use one of the registers shared between the handlers and primary
computation for the variable flt.

3.4 Synchronization

There are two basic ways an Active Message implementation can deal with synchronizing
arriving Active Messages with the primary computation executing on the node. Under an
in ,rupt-drwen model, incoming messages can interrupt the processor asynchronously
as soon as they arrive. Under a polling model, the processor periodically checks the
network to see if a message Is waiing, and if so extracts and handles it.

With the interrupt-driven model, messages are usually extracted immediately from the
network, resulting in both reduced network congestion and also lower average round-
trip latency for request-reply exchanges. Another advantage is that there is no need for
the user or compiler to explicitly add polls to the code doing the primary computation.
However, when an operation must be performed atomically with respect to message
arrival, such as the modification of a global data structure, some technique must be
used to temporarily disable message arrivals. The mechanism for forming these critical
sections should be inexpensive in terms of cycles consumed.

With a polling model, the formation of such critical sections is trivial; simply don't poll.
The burden of adding polls can be reduced if the network is always polled during send
attempts; then polls only have to be explicitly added to computation-only phases of
progam execution. Polling may have the benefit that many waiting messages can be
handled by one poll, reducing the number of context switches which may be costly in some
implementations. Also, it may be easier for a programmer to manage the complexity of
interacting pieces of code (primary computation and multiple handlers) if the possible
asynchronicity is restricted.

There was no need to choose between the two models. Interrupt-driven message reception
is the more general mechanism, and can emulate a polling mechanism. This is done by
"simply having message reception disabled by a default. A poll is then emulated by the
sequence "enable message reception, disable message reception". It is important that

16

the enabl/dsable operations are Inexpensive. This is true in this design; message
reeption is disabled or enabled simply by moving a zero or one, respectively, to the event
enable register. Thu the cost of forming a critical section in an interrupt-driven model
is Identical to the cost of performing a network poll in a polling model - 3 instructions.
Hazards involving transfers to and from network interface control registers are not known
at this time; there may be some delay slots in the code fragments that would have to be
filled with unrelated instructions or with nop instructions. See Figure 8.

"Odt ins ENTKR.CRIT
CTC2 tovent.enablo, 0 \1 clear event eable bit
--- delay slot ?I wait for it to take effect

#defoine XITCRIT
O• I , S o, ozo0o \
CTC2 *event.enablo, $ti i set event enable bit

#define NIXPOLL
0.I tl. 0, o.O000 \
CTC2 Uevent•._nable, ttl \1 set event enable bit
----delay slot ?7-- \! wait for it to take effect
CTC2 Sevent•eaable. o0 \1 clear event enable bit

Figure 8: Synchronization Code Fragments

3.5 Send Failure

Any network can get congested to the point that it cannot accept any more outgoing
messages from a node. What is done by the node in this situation requires careful design.
The result otherwise could be either deadlock or unbounded buffering requirements.

The solution adopted here is almost identical to that used by CMAM, the Active Mes-
sages implementation on the CM-5. There are two logically disjoint networks, a request
(low-priority) network and a reply (high-priority) network. A handler for a message from
the request network can be preempted only by a message from the reply network. A
handler for a message from the reply network cannot be preempted at all. This allows
at most the nesting of two handlers; this small fixed amount of nesting allows for the
implementation of state preservation in hardware.

A request handler is allowed to loop trying to send reply messages4 until it succeeds; a
reply handler is not allowed to loop indefinitely for any reason, but must execute quickly
to completion.

4Reply message Simply means a message sent on the reply (high-priority) network. A reply message
can be seat to any node, not necessarily the node that sent the request message being handled.

17

The restricted nesting of handlers Is enforced in the CM-5 implementation by simply
not polling the request network while executing a request handler, and not polling at
all during a reply handler. The hardware solution here is similar, but adapted to the
interrupt-driven synchronization. At the beginning of a request handler (i.e. at the
inlet event of a request message), the low-priority event enable bit is automatically
cleared, disabling the reception of any other request messages but allowing the reception
of reply messages5 . At the beginning of a reply handler (i.e. at the inlet event for an
incoming reply message), the event enable bit is cleared, disabling the reception of any
other message. At the end of the handler, the HRET (return from handler) instruction
automatically restores these enable bits to their prior values.

If the network cannot accept another message when a SEND instruction is executed, the
coprocessor Rfag is cleared to indicate a failure, and execution continues. This is different
than the CM-5 software implementation of Active Messages, in which a send will loop
indefinitely until it is successful pushing the message out to the network. A "failable"
send has the drawback that requires additional instructions to test for its success. In
this architecture, however, this test is typically only one instruction, a BC2F (branch on
coprocessor flag false) instruction.

Having a failable sends can be useful in some situations. With retry-until-successful
sends as in CM-5 Active Messages, handlers of request messages can only send reply
messages, and handlers of reply messages cannot send any message. With a failable
send software can attempt any priority send from any priority handler, as long as it is
prepared to give up after a fixed time and take alternate actions.

Another possible way of dealing with send failures that was briefly considered is to invoke
a special fault handler at that time. This approach is attractive because it eliminates the
need to check for success after each send. It is especially attractive when send failures
are rare. This approach is not taken here for a number of reasons. The first is that the
cost for the check of send success is exceptionally cheap in the TI - one instruction.
Also, it is expected that the action to be taken on a send failure may be different in each
case; having one global fault handler would be awkward in this situation.

Also, due to the efficiency of the network interface, a rapid sequence of sends may exceed
the network bandwidth. Thus transient send failures may be common in situations where
a node is doing nothing other than sending out large quantities of data. Trapping to a
fault handler in such situations would not be appropriate.

Some applications may only need one priority because of characteristics of the communi-
cation pattern or because high-level flow control is used to bound the amount of message
buffering required at each node. With such applications it would be desirable to get

3This differs slightly from the CM-5 implementation, in which request handlers are atomic except
when they attempt to msnd. In this implementation, a request handler that must execute atomically
with respect to reply handlers must explicitly form a critical section. This is not a large penalty due to
the low cost of forming critical sections.

18

the full physical bandwidth of the network while only using one priority. If the two
priorities are Implemented with physically disjoint networks, the applications may have
to artifcially spolt their communication between the two priorities in order to make full
use of the communication resources. With the CNS-I, however, the same physical links
are demand-multiplexed between the two priorities; if only one priority is being used, it
gets the full physical bandwidth. This allows applications to use the two priorities in
whichever way is natural while making optimal use of the communication resources.

3.6 Network Virtualisation

The CNS-1 is designed for single-user, batch-style processing; no timesharing or space
partitioning among multiple users will be done. Thus network virtualization is not an
issue; however, this subsection examines what changes would have to be made in order
to support network virtualization.

In a general communication architecture, it would be desirable to perform some type of
timesharing. The most straightforward way of doing this would be to adopt the approach
taken with the CM-5: gang-schedule all of the nodes synchronously [L+93]. The network
must be drained of messages when a process is preempted. During the draining phase,
each message in the network simply goes to the nearest node, whether or not that is its
destination; this limits the maximum amount of buffering done at any one node to V/N
rather than V, where V is the total network volume and N is the number of nodes.

To put hooks in for this type of operation, there would have to be a way for the kernel
to set a flag in the network interface that causes all user packets to drain to the nearest
node, where the kernel could store them in memory. These messages would then be
resent when that process resumes control. Some special precautions may be necessary
due to the possibility of send failures at this point (the network may fill up before the
kernel can put all the buffered packets back on the network; the user program must be
run for a short while to consume some of the messages before the kernel can send the
remainder of the buffered packets). Also, some mechanism must ensure that even after
preemption and subsequent rescheduling, a process' messages still satisfy the in-order
delivery specified in the architecture.

Of course, there would have to be some way for the kernel on each node to know that
it is time for a context switch. The simplest way is for each kernel to set its own timer,
and when the quantum is over, drain the network of user packets so that the kernel
can communicate with the other kernels or the host. If preemption is triggered from
an external source, then there must be some reliable way to communicate with each
kernel. It the CNS-1 this is not possible using the data network, since a user program
could deadlock both network priorities. The CNS-1 would be able to perform such
signaling to the kernels using the TSIP network, a separate diagnostic network similar
to JTAG. Another option would to be to add a new priority on the data network reserved

19

S

exdusively for kerel se.

3.7 Protection

Even though the nodes in the CNS-I support only a single user (no timesharing), a
protection mechanism is still necessary. While there is no need to make sure that a user
does not corrupt anotha user's code or data, the single user must still be prevented from
accusing the resident kernel's code and data. Why do we need a protected kernel at all,
if the nodes awe being used by a single user? The main reason is that nodes will directly
accs I/O devices, and such accesses must be regulated by the operating system; hence
the need for a protected kernel. In addition, a debugger must be protected from errant
writes of the program being debugged.

The memory protection mechanism for the planned implementation of the TI architec-
ture is straightforward: a write barrier is specified in a coprocessor 0 (COPO) register,
and any attempt to write past this barrier while in user mode results in an exception.

The extension of this protection across the network is similarly straightforward. When a
message is sent, a bit in the packet indicates whether the sending processor was operating
In user or kernel mode. This mode is the mode the receiving node runs at while handling
the message. If a packet sent at user mode contains a handler IP that points to code
in kernel space, an address error exception will occur when the fetch of the first handler
instruction is attempted on the receiving node. This prevents user code from invoking
kernel code (or modifying kernel data) on another (or the same) node by way of the
Active Message mechanism.

In general, message reception should be disabled while the processor is running in kernel
mode. This is because even though a user-level packet arriving at a node will cause the
processor to switch to user mode, preventing invalid memory accesses, the handler may
still corrupt any values the kernel has stored in processor registers.

The kernel/user bit is used only when the message has arrived at the destination; kernel
packets get no special priority on the network. If the application program has deadlocked
both priority networks, not even kernel packets can get through. For debugging in such
situations, the kernel can be accessed via the TSIP network.

3.8 Events vs. Exceptions

Some may question the wisdom of adding a completely new event mechanism to the MIPS
instruction set architecture. Why can't a message arrival simply cause an interrupt as
Is already defined?

20

The main reaso is performance; using the existing interrupt mechanism would require
first going through the geserc kernel exception handler, which would then have to dis-
patch to the Active Message handler. A well-tuned kernel dispatch routine could possibly
execute in 15-20 cycles; a more realistic estimate would be at least 100 cycles. The newly
defined event mechanism normally operates completely at user level and dispatches di-
rectly to the required handler, with an estimated overhead of 3-5 cycles.

At a more basic level, events and exceptions serve different purposes. Events are intended
to be an integral part of computation, occurring frequently and at user level, while
exceptions signal a situation where the kernel must get involved.

3.9 Extensions

The implementation described up to this point is a complete Active Messages communi-
cation architecture. However, because of known characteristics of the intended applica-
tions for the machine being built, some extensions to accelerate certain operations or to
provide more functionality have been added in a way consistent with Active Messages.

Other Events

In addition to inlet events caused by arriving messages, there are two additional events
that are anticipated to help facilitate efficient use of the communication network.

The first is an outlet event. This occurs when both the network is ready to accept
another additional outgoing message and the outlet enable bit is set. This is analogous
to an interrupt-driven message reception at the destination (having the sending node
periodically attempt to send would be analogous to a polling receive at the destination).
This will be useful in the case of large memory-to-memory data transfers occuring in the
background.

The second additional event is the timelet event. This occurs when both the timelet
enable bit is set and also the free-running timer matches the count register (both the
timer and count register are in the network interface and are user-accessible). Although
this function is not strictly communication-related, it is anticipated that it may serve a
function similar to the outlet event.

Hardware Implementation of Handlers

The inclusion of hardware-interpreted Active Message handlers does not conflict with
the Active Message philosophy, as long as it does not interfere with the efficiency and
versatility of the basic communication architecture. No hard-wired handlers are defined

21

in this specification; however, the implementor is free to define some. To allow for
this, handler addresses in the range OxFFFFOOO0 - OxFFFFFFFC (i.e. small negative
inteaers) are reserved for implementation-specific hardware-interpreted handlers.

When considering the addition of a hard-wired handler, a RISC approach should be
taken: unless it can be shown to result in at least a 1% overall improvement of the
computer's performance, it is not worth the trouble. The efficient hardware dispatch
to user-level code means that a short software handler may require a total (dispatch,
execution, and return) of only about 10 cycles, so it is unlikely that handler invocation
will occur frequently enough that saving a few cycles per invocation will result in a total
performance improvement of more than 1%.

One possible advantage of using hardware-interpreted handlers is the elimination of com-
petition between handler code and primary computation code for space in the I-cache.
However, such competition may be eliminated by other means in the implementation,
such as having a separate lockable I-cache for handler code.

Possible Hard-wired Handlers

One possibility for hard-wired handlera would be to handle remote memory accesses
such as fetches. A fetch request packet would contain a memory address to fetch, the
address of the requesting node, and the pointer to the handler on the requesting node
that will handle the reply. The network interface at the node holding the memory
location(s) would automatically access the cache or memory to retrieve the value(s)
and send it back in a reply active message. Because much flexibility is lost in dealing
with synchronization, the hard-wired handlers would probably only be used in bulk
transfers. A sequence of messages using a hard-wired handler would likely be followed
by a message using a software handler, which would increment the correct counter or
return an acknowledgement message to idicate the completion of the transfer.

If messages were limited to a payload of the contents of five scalar registers, such hard-
wired handlers could result in much more efficient memory-to-memory transfers of large
blocks of data. However, due to the efficiency of the existing vector message transfers, a
large amount of data can be transferred while stealing only a few cycles from the CPU;
thus there is little incentive for adding hard-wired remote memory access handlers.

Another possible function that could be handled in hardware is forwarding, or indirection.
The packet would contain the address and handler of its ultimate destination, but would
be sent to a different node (say Processor X). Processor X would read in the packet, see
that its handler IP indicates that it should be forwarded to a different node, reformat the
packet with its new network address and handler, and put it back on the network. This
function would be useful in some randomized algorithms, or whenever the user wants
more control over the path taken by packets.

22

Mufletics

Many applications require the disseminion of data from one node to many other nodes.
Such multicasts can be handled simply by having the source send a series of identical
messages, one to each receiving node. If this simple approach is found to be consuming
too much bandwidth and/or time (to send the repeated messages), a tree distribution
scheme can be set up in software: the source sends the message to two other nodes; each
of these nodes resends the messages to two other nodes, and so on.

With hardware support for imilticasts, latency and bandwidth can be reduced below that
possible with either of the software methods described above. However, the hardware
support for multicast should not have a negative impact on normal unicast traffic, or
else overall performance may actually decrease. The multicast support must be useful
yet also simple and easy to implement.

The CNS-1 multicast support mechanism possesses these characteristics. The mechanism
is simple: drop of a copy of the packet at every node that is passed on the journey from
the source to the destination, not including the source itself. The topology of the CNS-1
is basically a two-dimensional mesh. The path between two nodes in the same column
or same row is guaranteed to be the shortest-path straight line, but if the source and
destination are in both different rows and different columns, the route is not specified.
Thus the behavior of multicasts is defined only when the source and destination are in
the same row or the same column. This leaves the implementation some leeway in the
exact routing protocol used, and in fact makes no restrictions at all on unicast routing.

With this mechanism, the distribution of data to an entire row or column of nodes takes
only as long as it would take to send a unicast message to the far node, and consumes
exactly as much network bandwidth. To cover a two-dimensional patch of processors, a
two-step distribution would be used (see Figure 9).

Actually the CNS-1 mesh wraps around in one dimension (see Figure 5). This compli-
cates sending a multicast to an entire ring of processors; the "shortest-path straight line"
between any two nodes can cover at most half of the nodes on a ring, because the mes-
sage will go the shortest way around the cylinder. A node wanting to multicast to every
node on a ring will have to send two multicasts, one each direction around the cylinder.
Another possibility is to modify the routers so that when a node sends a multicast to
itself, it will actually travel all the way around a ring.

Using this mechanism forces the software to be aware of the network topology, the
relative positions of the nodes in the network, and part of the routing algorithm. These
are parts of the communication micro-architecture and should not really be visible in the
communication architecture; however, most of this information is "performance visible"
and would have to be known in order to optimize for locality even for normal unicast
communications.

23

Figure 9: Two-phase multicast to two-dimensional region. S signifies source of message; M
signifies reception of multicast copy; D signifies actual destination of message. In actuality,
receiving nodes can not tell whether or not they are the final destination, but they can tell
whether the message received is part of a multicast or not. The target region for the multicast
does not have to be rectangular.

For each basic send instruction, a multicast version has been added to the instruction
set. Each multicast instruction behaves identically to its non-multicast version except
that the message is received at each node along the path that is traveled.

The only change in the network interface registers is that a new bit field has been added
to the status register; this bit indicates whether or not the packet that is currently being
handled was part of a multicast.

3.10 Conclusion

In this section many of the design details of the Ti's Active Message communication
architecture have been described along with some of the reasoning behind each decision.
The resulting architecture is straightforward to use and lends itself to an efficient VLSI
implementation. Although the exact numbers will not be known until the design of
the TI is complete, it is estimated that a message send (normal or multicast) of up to
37 data words will cost approximately 5 cycles; message reception and the dispatch to
the appropriate handler will also have an overhead of about 5 cycles (neglecting I-cache
misses). Forming a critical section or performing a network poll would cost less than 5
cycles.

For more details of the interface between software and the network interface, refer to the
specification itself, included as Appendix A.

24

M4

4 Previous Rm erch

This project, the network interface for the Ti processor, is not the first attempt at
denig a coherent comm t architecture. Many earlier academic projects have
added support for multicomputIng to a m rocesor.

The MDP processor in the J-Machine [DCC+87] was designed to provide hardware sup-
port for message-driVen programming languages. However, it was not able to implement
the full messiae-driven architecture because the resulting complexity would have been
overwhelming. It was restricted to hardware support of one thread at each of three pri-
oritles; a context switch between threads of the same priority involved moving register
contents back and forth to memory. In reality, the MDP would support Active Mes-
sages very well if it weren't for the fact that the register sets for the different threads
are disjoint, preventing a close coupling between the primary computation and Active
Message handlers. Another disadvantage of the disjoint register sets is that the number
of registers available to each thread is greatly reduced. This prevents the high computa-
tional efficiency witnessed in conventional RISC processors resulting from having a large
amount of state close to the functional units (see (SGS+93] for a detailed comparison
between the J-Machine and the CM-5).

A more recent project at MIT is the Alewife multiprocessor and its Sparcle chip
[AKK+93]. The approach taken in the Sparcle chip is similar to the work described
in this report, in that incremental changes are made to a mainstream microprocessor,
Sparc in the case of Sparcle. The current implementation of Sparcle is not as ambitious
as the TI as far as providing an intimate coupling between computation and messaging
(this was not a primary objective, as the Alewife's main communication mechanism is
cache-coherent shared memory). Message send and receive is handled by the communi-
cations and memory management unit (CMMU) located on a separate chip. The CMMU
signals the reception of a message via a dedicated trap line into the Sparcle chip, causing
control to be vectored to a trap handler which then can load and interpret the message.
The Sparcle chip supports a limited number of threads by segmenting the Sparc register
file into four non-overlapping windows. While this may superficially appear similar to
the multiple physical copies of some of the registers in the Ti architecture, the difference
is that Sparcle supports three general computational threads plus one context for traps
and handlers, while Ti supports only one computational thread along with two priorities
of handlers; these handlers, while tightly coupled to the primary computation, do not
perform any computation themselves.

The *T project at MIT has incorporated a network interface with another commercial
processor, the Motorola M88110, to make the M8811OMP [PBGB93]. The resulting
communication architecture is very similar to that presented here. There is a minor
difference in data placement; the M8811OMP has added separate send registers and re-
ceive registers, which are accessed through new instructions (but cannot be used directly
in normal computation). Also, although it is straightforward to implement a polling

25

Active Message layer on top of the existing hardware, the current implementation has
no support for hardware dispatch to the Active Message handler. To its credit, the *T
has attacked the UNIX protection issues that were not addressed in this project. Also,
the *T added a network interface to a auperscalar processor, which posed a somewhat
greater challenge.

A slightly different architecture for multicomputers results when there is a separate com-
munication processor, as in the Meiko CS-2 [BCM94]. This type of architecture can be
thought of in the Active Message framework as having a processor dedicated for Active
Message handlers (although the CS-2 does not currently support user Active Message
handlers on its communication processor). The advantage of having a separate commu-
nication processor is that when the handlers are independent of the computation on the
main processor, as in the case of a remote fetch, no cycles are stolen from the primary
computation. However, when the message does interact with the primary computa-
tion, there is typically extra latency and overhead for data transfer and synchronization.
When the CNS-1 is completed, quantitative comparison studies should provide useful
data about these tradeoffs.

5 Concurrent Work

There has been a substantial amount of work done towards the implementation of the
communication micro-architecture and communication hardware to go with the commu-
nication architecture presented here. This work falls under two main categories: the
creation and use of a simulator running on a Thinking Machines' CM-5 to compare
different design options for the communication micro-architecture (e.g. buffering and
flow-control strategies), and the subsequent creation of an RTL model of the communi-
cation hardware.

6 Conclusion

This report contains a full specification of a communication architecture to be incor-
porated into the MIPS instruction set architecture. The communication architecture is
based on the Active Messages mechanism, which has been shown to possess the desirable
attributes of versatility, efficiency, and incrementality. The resulting architecture will be
able to provide high performance under any of a variety of programming models: send
& receive, shared memory, or dataflow.

Because the communication architecture is based on Active Messages, the CNS-1 will
be able to benefit from much of the work that has gone on here at Berkeley in the area
of parallel language development. Split-C will provide a global address space with the

26

familiar C interface. Datallow-style languages such as 1d90 will be supported efficiently
by the TAM model. These languages have already been implemented on top of other
similar Active Messag implementations, so that porting them to the CNS-1 should be
straightforward. However, In both compilers there will be many new opportunities for
optimization for the Ti architecture, e.g. aUociM registers to pass data or synchro-
nization information between handlers and the primary computation.

The fruits of this project will be used in a chip that will be fabricated and used in
a real multiprocessor computer. I hope that the success of this chip will demonstrate
the benefits of adding a tightly-coupled network interface to a RISC microprocessor.
Hopefully MIPS and other major chip makers will follow Motorola's lead and devote
some real estate to a similar network interface'to create a multiprocessing version of their
microprocessor. Perhaps eventually an integrated network interface will be a standard
part of every RISC microprocessor.

6.1 Acknowledgements

Most if not all of the ideas concerning communication architectures and Active Messages
presented here were developed by Thorsten von Eicken. Even many of the implementa-
tion details are similar to those in CMAM, the CM-5 Active Message implementation by
von Eicken. The rough sketch of the communication architecture desired for T1 was done
by Krste Asanovic, the head architect of T1, and John Wawrzynek, the project leader. I
have regularly consulted Krste Asanovic, John Wawrzynek, Brian Kingsbury, Bertrand
Irissou, Sven Meier, and Stelios Perissakis about the VLSI implications of my choices.
The development of the multicast extension described here was spurred by discussions
with Jerry Feldman. Useful feedback has been gathered from many of the people working
on the CNS-1 project, including David Johnson, Silvia Meuller, James Beck, Phil Kohn,
and others at ICSI, including Stephan Murer and Steve Omonohundro. Thanks go to
Katherine Yelick, John Wawrzynek, and Andrea Dussean for reading and commenting
on earlier drafts of this report; their feedback resulted in many significant improvements.

This research is supported in part by a National Science Foundation Graduate Fellowship,
Grant URI-N00014-92-J-1672 from the Office of Naval Research, and National Science
Foundation Infrastructure Grant number CDA-8722788. Additional support comes from
the International Computer Science Institute, whose funds are provided by the ministries
of research of Germany, Italy, and Switzerland, and cooperating companies.

References

[AKK+93] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald
Yeung, Godfrey D'Souza, and Mike Parkin. Sparcle: An Evolutionary Pro-
cessor Design for Multiprocessors. IEEE Micro, 13(3):48-61, June 1993.

27

[BCM94] Eric Barton, James Cownie, and Moray McLaren. Message passing on the
Meiko CS-2. Parallel Computing, (20):497-507, 1994.

[CDG+93J David & Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Paral-
1.1 programming in Split-C. In Proc. Superomputing '93, Portland, Oregon,
November 1993.

[CGSvE93] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and Thorsten
von Eicken. TAM - A Compiler Controlled Threaded Abstract Machine. In
Journal of Parallel and Distributed Computing, Special Issue on Datafioa,
June 1993.

[DCC+87] Witliam J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar
Horwat, Jon Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture
of a Message-Driven Processor. In Proc. of the 14th Int'l Symposium on
Computer Architecture, June 1987.

[GWC93] Seth Copen Goldstein, Su-Lin Wu, and Timothy John Callahan. Hardware
Support for Packet Reordering and Flow Control in Multicomputer Net-
works. CS252 and CS250 class projects, University of California at Berkeley,
November 1993.

[HJ92] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-
Network Interface. In Proc. of 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems. ACM, October 1992.

[Kan88] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, 1988.

[KJA+93] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-
Hong Lim. Integrating Message-Passing and Shared-Memory: Early Expe-
rience. In Practice and Principles of Parallel Programming (PPoPP) 1993,
pages 54-63, San Diego, CA, May 1993. ACM. Also as MIT/LCS TM-478,
January 1993.

[L+93] Charles E. Leiserson et al. The Network Architecture of the Connection Ma-
chine CM-5. In Proceedings of the 5th Annual Syrnp. on Parallel Algorithms
and Architectures, 1993.

[Lun94] Stephan S. Luna. Implementing an Efficient Portable Global Memory Layer
on Distributed Memory Multiprocessors. Technical Report UCB//CSD-94-
810, University of California at Berkeley, May 1994.

[PBGB93J G.M. Papadopoulos, G.A. Boughton, R. Greiner, and M.J. Beckerle. *T:
Integrated Building Blocks for Parallel Computing. In Proc. Supercomputing
'93, Portland, Oregon, November 1993.

28

[SGS+93J Ellen Spertas, Seth Capon Golldstain, Klaus Erik Schauser, Thorsten von
Elcken, David E. Culler, and William J. Dally. Evaluation of Mechanisms
for Fine-Grained Parallel Programs in the J-Machlne and the CM-5. In
Proc. of he i th Int'l Syrmp. on Computer Architecture, San Diego, CA,
May 1993.

[vE93] Thorsten von Eicken. Active Mesages: an Efficient Communication Archi-
tecture for Multiprocessors. PhD thesis, University of California at Berkeley,
December 1993.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: a Mechanism for Integrated Communication and
Computation. In Proc. of the 19th Int'l Symposium on Computer Architec-
ture, Gold Coast, Australia, May 1992. (Also available as Technical Report
UCB//CSD-92-675, University of California at Berkeley).

29

a =i B ig ii I I I i i

Appendix A
Network Itec Specification

30

- - -- m"--7rT'"~ -- 7~

A.1 Oveview to the handler, part of the CPU register set is
swapped to an event set that includes the newl.,
arrived message data in the same registers used

The Tobrent network Interface Is Implemented for sends. Specifically, the argument passing reg-
pat of coprocessor two (COP2), which if shared isters ($4-$7) and the stack pointer register ($29)
with the Torrent vector unit. are swapped to an event set containing the newly

The network Interface has been designed to sup- arrived data, and two of the temporary registers

port the Active Mee e communication ~mw - ($s and $9) are swapped to an event set whichpma (Thorsten yon Eicken etca.). This media- cn be used an scratch space or to maintain stateaism (mniie cn nunicatlon overhead, allows between handler invocations. See Figure 1.

communication to overlap computation, and co-
ordinates the two without sacrificing processor
performance. Ea. ms .1 '

Network Interface Registers - Go&

There are a number of network interface registers a.",a"-aot

located in COP2 register space; they are accessed .bw•.f.".h..,
via the ctc2 and cf c2 instructions. These regis-
ten ae used to configure the network interface, 6 ..s..iB

report interface status, set the address of certain
event handler routines, and report auxiliary in-
formation about incoming messages.

Figure 1: CPU register fileMessag Data Transfer

Optionally, a data vector is included in the mes-
Message transmission and reception are modeled sage from a vector register in the vector unit. The
as a remote procedure invocation that causes an data vector is always received into an event copy
asynchronous subroutine call. Scalar headers are of 8vrl which is swapped in during the message
built up in the CPU registers, using registers handler (analogous to the CPU register swap-
*4-87 and $29. These correspond to the argu- ping). This allows large data blocks to be sent
ment and frame pointer registers in the MIPS and received with low CPU overhead.
procedure call convention. A message send in-
struction (implemented as a COP2 instruction)
specifies the destination processor in a register, Network Interface Instructions
the scalar message length in words, and a han-
dler address. The contents of the scalar registers The instruction set has been extended in the
at the point of the send instruction are used for COP2 opcode space to deal with the network in-
the data component of the message. terface. The standard ctc2/cfc2 instructions are

used accessing network interface control registers.On message arrival, an event causes CPU control

to be transferred to the handler address sped- The standard MIPS branch-on-coprocessor in-
fled in the message. As control is transferred structions are used to branch conditionally upon

31

the condition flt in the network hiterfae. This and Its usam, on Subsection A.1O.
Ag is set or reset by the send Instruction depend-
Ing upon whether It was saccesduL Network Interface Events

There exist four diferent versioms of the smnd in-
struction. A message can be sent at either high Them are three different events associated with
priority or at low priority, and a mssage may or the network Interface which can Interrupt the nor-
may not include the contents of a vector register mal operation of the CPU. The first type of event
in additimo to Its scalar d". is the arrival of a message. In this case CPU con-

The HRET Instruction is used to return the CPU trol is transferred to the handler specified in the

to Its previous processing state and rsume pro- message. The second type of event is an outlet,
Sexecution at the point it was preem pted. which can cause CPU control to be transferred

to an outlet handler (specified in a coprocessor
register) whenever the network interface can ac-

Message Delivery cept another outgoing message from the CPU.
The third type of event is a timelet, which causes

While the exact performance of the network will CPU control to be transferred to a timelet han-

depend upon the network implementation and dler (also specified in a coprocessor register) after

network load, some general characteristics of the a certain amount of time has elapsed.

network can be described. Events are divided into two priority levels - high

The network will not "drop" any messages - if and low. The arrival of a high priority message

the network accepts a message, it is guaranteed is the only high priority event. Outlets, timelets,

to eventually get through to its destination. if and arrivals of low priority messages are all low

messages are sent to a processor faster than it pro- priority events.

cesses them, the messages will back up through Low priority events can preempt normal compu-
the network, and eventually the sending proces- tation but not other event handlers. High pri-
sor(s) will be inhibited from sending any more ority events can preempt normal computation or
messages. low priority event handlers but not high priority

event handlers. This allows at most two levels
There are two priority levels for messages - low event handling. See Subsectios Awo (evens

and high. These can be thought of as two logically and A.7 (The HRET Instruction).

separate networks. Even if low priority messages

are backed up so that a processor cannot send any Events are enabled or disabled depending on the
more, it can still send high priority messages that setting of two bits in the network interface status
can get to the destination regardless of the low register: EE (event enable) and LPEE (low priority
priority traffic. High priority messages can only event enable). If EE is clear, then all events are
be blocked by other high priority messages. disabled. If LPEE is dear, then low priority events

are disabled. Stated another way, high priority
It is guaranteed that the delivery of messages is are enabl ed only if his ; priority

in-order between any pair of processors..That is, events are enabled only if both lan prioare
the essgessentfro prcesor Adirctl to events are enabled only if both EE and LPEE are

the messages sent from processor A directly to set. In addition, there are event mask bits which
processor B at the same priority level are garan- can be used to individually disable the different
teed to arrive at processor B in exactly the same types of events.

order as they were sent from processor A.

For further discussion of properties of the network

32

A.S Netwoik Iterbm Riegter. A.2.1 Timeht Handle (NIRS)

The network Interface registers are listed in T1a 31 o

ble32

. A!! Description FJgure 2: Timelet Handler Risiter Format
6 tinsh Timelet handler.
7 t•mec Timelet compare register. The timelet handler (tlinh) register is a 32b
9 Count Count register. read/write register that specifies the handler to

18 enable Network interface enable register. be invoked at the occurrence of a timelet event.
19 n1stat Network interface status register. A timelet event occurs when the both the tp
20 LPZPC Low priority event PC. (timelet pending) and tu (timelet mask) bits are
21 High priority event PC. set, and low priority events are enabled. The tp
22 nMid Network interface ID. bit gets set when the value in the Count register is
23 doh Default message handler. equal to the value in the timelet compare (tinec)
24 outh Outlet handler. register.
253 lin Incoming handler. Since instructions must be word aligned, this reg-

ister must contain an address whose two low or-
Table 1: Network interface registers in COP2. der bits are zero. Otherwise, an address exception

will occur when the CPU attempts to invoke the
timelet handler.

33

A.2.2 Timmet Compa, Reit (NIR?) A.2.3 Count Regte (NMI)

31 0 31 0

32 32

Figure 3: Tlmelet Compare Ragister Format Figure 4: Count Register Format

The timelet compare (tiaec) register is a 32b The Count register acts as a timer, incrementing
read/write register. When the value of the Count at a constant rate whether or not an instruction
register equals the value of the timelet compare is executed, retired, or any forward progress is
register, the tp (timelet pending) bit in the EP made. The rate at which the Count register is in-
field of the network interface status register gets cremented is dependent upon its implementation.
set. This causes a timelet event to occur on the The Count registers of all nodes are reset and in-
next cycle in which timelets are enabled. Timelets cremented simultaneously, providing a universal
are enabled if ta, LPUE, and EE are all set. time reference.

The tinec register can be read or written at any
time using the ctc2/cfc2 instructions. Writing
to the timec register has the side effect of clearing
the tp bit.

34

A.2.4 Network Intere_.e ,nable Reqgster A.2..5 Network Interface Status Register
(NIMiS) (N2M19) - EHih 16 Bits

31 1 0 31 30 20 29

0 o I I p--d I 0I I O
31 1 1 1 1 1

224 23U20 19 16 1? 16
I rF I ER ILm U~lI Spa rlaal

Figure 5: enable Register Format 4 4 1 1 1 1

The enable register contains only one active bit:U (event enable). Figure 6: Network Interface Status Register For-
mat - High 16 Bits

The E (event enable) bit is read/write; it disables
all types of events when it is clear. This bit is au- the network in staurester7,n t ai
tomatically cleared when an high priority event
occurs to prevent further events from occurring, Accesses to nistate are fully interlocked; reads
and it is automatically set by the HRET instruc- from it will reflect the results of all previous in-
tion of the high priority event handler. Events structions, and writes to it will not be affected by
sould not be enabled within an event handler by any previous instructions.
nmnually setting the EE bit.

The pond (event pending) bit is read-only. It in-
Writing a 0 to this register atomically disables . dicates whether one of the events that is individ-
types of events. This is useful for critical sections. nally enabled by the Event Mask field is pending.

When the EE bit is dear (i.e. events are disabled),
this bit can be checked for a quick poll.

The nicond (network interface condition flag) bit
is read/write. It is set or cleared by SEND in-
structions to indicate whether the attempted send
was successful or not. This bit can be tested using
the BC2F/BC2T instructions.

The onicond (old network interface condition
flag) bit is read/write. It is used to save the con-
tents of nicond when control is transferred to an
event handler.

The EP (Event Pending) field contains four read-
only bits indicating which of the four events are
pending. This is described in detail later.

The EM (Event Mask) field contains four
read/write bits which control the enabling of the
four events. This is described in detail later.

The LPEE (low priority event enable) bit is
read/write; it disables low priority events when
it is clear. It is automatically cleared when a low

35

priority event occurs, and it is automatically set A.2.6 Network Interface Status Regis-
by the IRET instruction of the low priority event ter (NIRlO) - Event Pending and
handler. Events should not be enabled within a Event Mask Fields
handler by manuadly setting the LPES bit.

3128 27 26 25 24
The ipa (low priority network available) bit is "I 1p 5 1 Tp
read-only; when set, it indicates that the network 4 1 1 1 1

interface is currently willing to accept a low pri- 23 22 21 20 190

ority message from the CPU. 1PO 1Po *a I ta I
1 1 1 20

The hpa (high priority network available) bit is
read-only; when set, it indicates that the network Figure 7: Network Interface Status Register For-
interface is currently willing to accept a high pri- mat - EP and EM Fields
ority message from the CPU.

The Event Pending field is read-only and imdi-
The ame bit is read/write; it specifies whether TeEetPnigfedi edol n ni
Acthve Messagis areenad/write; int. Wcifie etver cates which of the four events are pending. The
Active Messages are enabled or not. With Active Event Mask field is read/write and is used to in-
Messages enabled (aim, set), messages are handled viulyebe/sbeechvnt

by the handler specified in the message. When dividually enable/disable each event.

axe is clear, all messages are handled by a default The hpmp (high priority message pending) bit,
message handler, which is specified by the dab when set, indicates that a high priority message
register. has arrived. When it is set, a high priority mes-

sage arrival event will occur on the next cycle in
which both the hpum and EE bits are set. This
bit will automatically clear when there are no
more incoming high priority messages waiting to
be handled.

The ipap (low priority message pending) bit,
when set, indicates that a low priority message
has arrived. When it is set, a low priority mes-
sage arrival event will occur on the next cycle in
which all of the 1pm., LPEE, and EE bits are set.
This bit will automatically clear when there are
no more incoming low priority messages waiting
to be handled.

The op (outlet pending) bit, when set, indicates
that the network interface can accept an outgo-
ing message (this occurs when both priority net-
works are available, i.e. both ipa and hpa are
set). When the op bit is set and also all of the
om, LPEE, and EE bits are set, an outlet event will
occur. This bit will automatically clear when the
low priority network can no longer accept an out-
going message.

The tp (timelet pending) bit is set when the

36

Cout register contains the same value as the A.2.7 Network Interfac Status Register
timec register. When this bit in set, a timelet (NIRIO) - Low 16 Bits
event will occur on the next cycle in which all
of thet a, LPEE, and EE bits are set. This bit is 15 1413 1210 9 o
cleared either by the occurrence of a timelet event 1'lri 1 0 1 saim vime
or by a write to the timec register. 1 2 3 10

The hp= (high priority message mask), 1pm Fo
(low priority message mask), oa (outlet mask), Figure 8: Network Interface Status Regter For-
and ta (timelet mask) bits are used to individu- mat - Low 16 Bits
ally enable/disable each type of event (0 4-+ dis- The network interface status register, nistat, is
able, 1 .- , enable). formatted as shown in Figures 6, 7, and 8. Bits

15-0 are only valid within a message handler; they
contain auxiliary information about the incoming
message.

Accesses to nistate are fully interlocked; reads
from it will reflect the results of all previous in-
structions, and writes to it will not be a&ected by
any previous instructions.

The pri bit indicates the priority of the incoming
message (0 +-+ low priority, 1 +-, high priority).

The sien field indicates how many scalar words
are in the message, while the vlen field indicates
how long the vector component of the message is.

37

A.2.8 Low Priority Event Program A.2.9 High Priority Event Program
Counter (NIR2O) Counter (NIM21)

31 0 31

S addr I addr
32 32

Figure 9: LPEPC Register Format Figure 10: HPEPC Register Format

The LPEPC is a 32-bit, read/write register used to The HPEPC is a 32-bit, read/write register used to
store the address where processing resumes after store the address where processing resumes after
the completion of a low priority event handler. the completion of a high priority event handler.

38

A.2.10 Network Interta ID (NIR22) A.2.11 DEbult Mesowe Handler Register
(NUI2S)

31 11 10 0

21 11 dr I
32

Figure 11: Network Interface ID Register Format
Figure 12: Default Message Handler Register For-

The network interface ID (niid) register is a 32b mat
read only register that contains a value giving the
unique identity (i.e. network address) of the pro- The default message handler (duh) register is a
cessing node. 32b read/write register that specifies the address

of the handler which is to be invoked when any
The niid register is formatted as shown in Fig- message arrives while Active Messages are dis-
ure 11. Bits 10-0 provide a unique identifier for abled (i.e. while aue is clear).
the processor; its interpretation is implementa-
tion dependent. Since instructions must be word aligned, this reg-

ister must contain an address whose two low or-
der bits are zero. Otherwise, an address exception
will occur when the CPU attempts to invoke the
default message handler.

39

A.2.12 Outlet Handler Register (NIR24) A.2.13 Incoming Handler Register
(NIR25)

31 0

32

Figure 13: Outlet Handler eise Format
Figure 14: Incoming Handler Register Format

The outlet handler (outh) register is a 32b
read/write register that specifies the address of The incoming handler (inh) register is a 32b read-
the handler which is to be invoked when an outlet only register that holds the address of the han-
event occurs. An outlet event occurs when both dler specified in the incoming message. The con-
the op (outlet pending) and am (outlet mask) bits tents of this register are only valid inside of a
are set, and low priority events are enabled. The message handler. While this is redundant infor-
op bit is set if and only if the network interface mation when Active Messages are enabled, it is
has room to accept another low priority message. useful when Active Messages have been disabled
Typically an outlet handler will prepare and send (possibly for debugging purposes). In this case, a
a message. default message handler is always invoked when

a message arrives; it can then use inh to deduce
Since instructions must be word aligned, this reg- which type of message it actually was that ar-
ister must contain an address whose two low or- rived. (Also, it is possible to implement a more
der bits are zero. Otherwise, an address exception primitive type of message passing mechanism by
will occur when the CPU attempts to invoke the disabling Active Messages and using the handler
outlet handler. address field as a message type tag, which can be

read from inh.)

40

A.S Instruction Overview Network Instruction Formats

Network Instruction Classes Instructions for reading or writing to the net-
work interface registers use the standard MIPS

There re a number of additional Instructions for tc2/cfc2 encoding.

deaing with the network interface, divided into Similarly, network interface branch instructions
four classes: use the standard MIPS bc2t/bc2f encodings.

Since HRET has no modifiers or arguments, its
"* Network Interface Register Instructions encoding is straightforward.

that read and write network interface regi
ters. The SEND instructions extend the MIPS ISA us-

ing COP2 opcode space. The general format of
"* Network Interface Branch instructions SEND instructions is shown in Figure 15.

which conditionally cause a CPU control
transfer based on the condition flag in the
network interface. 31 26 2524 2321 2016 1511 106 5 0

COP2 1 10 rt I rd Ivd ISENDxx
"* Send instructions which cause the con- 010010 0010 00xx

struction and transmission of an interpro- 6 2 3 5 5 5 6

cessor message.

"* Handler Return instruction, HR-ET, Figure 15: SEND instruction general format.

which causes the resumption of normal pro- The n field specifies how many scalar words to
cessing after an event handler has com- include in the message.
pleted its work.

The rt field specifies a register which contains the
address of the remote handler for this message.
The rd field specifies register which contains an
implementation-dependent identifier of the des-
tination node. The vd field specifies the vector
register to be optionally included in the message.
The length of the vector is obtained from the vir
(vector length register) in the vector unit.

The low two bits (shown as xx) determine the pri-
ority of the message and whether a vector register
is included. Each different combination of these
two bits and the n field leads to a different ver-
sion of the SEND instruction. These are listed in
Subsection A.6.

41

A.4 Network Interface Register Instruc- CFC2 Move Control From COP2
tions

31 26 25 21 20 16 1511 10 0iCOP2T-M I 1
The network Interface register instructions move 0ioo Ol OOlO 1 ,O i 1 mi oooooooIeM
values between the CPU registers and the net- 6 5 5 5 11

work interface registers. These operations use the
standard MIPS coprocessor register operations. Format:

The results of these operations are unpredictable CFC2 rt, nirs
if the coprocessor register field is neither one of
the valid network interface register numbers as Description:
listed in Table I nor one of the other registers de-
fined in COP2 for exception handling or memory The contents of the network interface's control
management. register Mrs are loaded into CPU register rt.

This operation is only defined when nirs is a valid
coprocessor register.

Operation:

rt := nirs;

Exceptions:

Coprocessor unusable exception.

42

-0

0Mm Coaro 1i aim
81e M ai IS 531

Ibruats

CmC rt, wir

Description:

Te contents of CP'U register ftare loade into
the netwok Interfmce's register mum.

T7is operation is only defined when nirs is a valid
copocesorregister.

Operation:

ufro : rt;

Exceptions:

Coprocessor unusable exception.

43

A.S Network IUterface Branch Instruc- BC2T Branch on Network Interface True
tions

31 26 2 21 20 16 15 0

The network Interface status register contains a con i eVm SoorI

mingle condition tag, nicond, which is set and 6 5 5 16
reset by the SEND Instruction depending upon Its
success. A conditional branch may be performed Format:
on the contents of this Rlag using the standard
MIPS branch-on-coprocessor instructions. BC2T offset

There must at least one instruction between the Description:
SEND instruction and a following network inter-
face branch instruction which uses the nicond bit. A branch address is computed from the sum of

the address of the instruction in the delay slot
and the 16b offset, shifted left two bits and sign-
extended to 32 bits.

If the network interface condition flag is set, the
program branches to the target address, with a
delay of one instruction.

Operation:

// do next instruction;
if (nicond) goto label;

Exceptions:

Coprocessor unusable exception.

44

S30 hmmsh m Ndwek Imtmbmw .IM

a1 30 soa 30 0 sc onr I DC• I i. a
COP S 1 a t

Ubmiat:

BC2F 1fiaet

A brach adres is computed from the sum of
the address of the instruction in the delay s
and the 16b *.&4, shifted left two bits and sign-
extended to 32 bits.

If the wetwork interface condition lg is clear,
the program branches to the target address, with
a delay of one instruction.

Operation:

// do next inasruction;
It (lnicasd) goto label;

Exceptions:

Coprocessor unusable exception.

45

A.6 Send][structlon SENDn Send Message

SEND Intractiossifpdy the destimatlproces- 31 326 234 2 21 2016 1511 106 5 o
srinrharegister, the message gthlinwads (as re It W vd WS
pat of the opcode), &ad a handler address in a 1 0010 10 I I I Is1
Meist". f the low two bits of the hndler addres 6 2 3 5 5 5 6

are not both sero, then the coprocemor exception
"Handler Address Error' is raised. The daft for Format:
the message is gathered from CPU scalar registers
and/or a vector unit register. SENDn vd, rd, rt

The message which Is formed Includes a copy of Description:
the KU. (current kernel/user) bit; this is used o If the network cannot accept the outgoing m•-
that the handler on the receiving node executes in sg the network interfae condgtion
the same mode, kernel or user, in which the send- sage, ncond (the network interface conditioning odewasopeatig whn te mssae ~flag) is cleared and the instruction is aborted.ing node ,was operating when the message was
senit. If the network can accept the outgoing message,

nicond is set, and the message is constructed and
sent. The contents of it are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $5, $6, $7, $29
are used as the data component of the message.
Encodings with n greater than 5 are not valid in-
structions.

The message will have low priority.

Although this instruction may take multiple cy-
des, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:

Coprocessor unusable exception.

Coprocessor Exceptions:

Handler address exception.

46

S=ND.V Send Meae w/ Vector S.NDK Send High Priority Message

a n 1•42821 2016 1511 10o & 0 31 26 24 231 20 16 15f 10 65 0OGP2l xo I- r I d iTP A id " , ,
Jo10 1t XL i

0!10610 10 100016 100 10 100001 _
6 2 a 5 5 a 6 6 2 3 5 5 5 6

Format: Format:

SENDn.V vd, rd, rt SENDnH vd, rd, rt

Description: Description:

If the network cannot accept the outgoing mes- If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition sage, nicond (the network interface condition
flag) is cleared and the instruction is aborted. flag) is cleared and the instruction is aborted.

If the network can accept the outgoing message, If the network can accept the outgoing message,
nicond is set, and the message is constructed and nicond is set, and the message is constructed and
sent. The contents of rt are used as the address sent. The contents of rt are used as the address
of the handler for the message. The contents of of the handler for the message. The contents of
rd specify the destination processor for the mes- rd specify the destination processor for the mes-
sage in an implementation-dependent way. The sage In an implementation-dependent way. The
contents of the first n of $4, $5, $6, *7, $29 contents of the first n of $4, $5, $6, $7, $29
are used as the scalar component of the message, are used as the data component of the message.
appended by the vector data contained in ud (vec- Encodings with n greater than 5 are not valid in-
tor control register vir is read to get the vector structions.
length). Encodings with n greater than 5 are not
valid instructions. The message will have high priority.

The message will have low priority. Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-

Although this instruction may take multiple cy- not occur in the middle of its execution.
des, it is atomic in that interrupts or events can-
not occur in the middle of its execution. Exceptions:

Exceptions: Coprocessor unusable exception.

Coprocessor unusable exception. Coprocessor Exceptions:

Coprocessor Exceptions: Handler address exception.

Handler address exception.

47

SNDnH.V Send High Prioity Mos. w/
Vector

31 26 2524 321 2016 1511 10 6 0

010010 1001
CIO" I n rt

6 2 3 5 5 5 6

Format:

SENDsH.V vd, rd, rt

Description:

If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition
tlag) is cleared and the instruction is aborted.

If the network can accept the outgoing message,
nicond is set, and the message is constructed and
sent. The contents of rt are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $6, $6. $7. $29
are used as the scalar component of the message,
appended by the vector data contained in od (vec-
tor control register vir is read to get the vector
length). Encodings with n greater than 5 are not
valid instructions.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions-

Coprocessor unusable exception.

Coprocessor Exceptions:

Handler address exception.

48

A.T RET Instruction H ZRET Return from Event Handler

31 26 2 24 6 & 0
The HMLT instruction is used to return from an COP2 0 OW 0 i O 0r 1
event handler and resume processing where It was 010010 1 000 000 00000o0000o 0 011100
interrupted. 6 1 19 6

Assuming the LPKE and KE bits are correctly set
(that is, they contain the same values as they
did when the event handler began execution), HRET
the BRET instruction will correctly return to ei-
ther normal code or to a low priority handler, Description:
whichever was interrupted by the event which wasjust handled. An HR.ET instruction is executed at the end of an

event handler to restore the state of the CPU and
network interface and resume processing where it

U!., was interrupted by the event.

The following actions are performed:

Low PM*

"" The EE and LPEE bits are updated to reflect
10 that one level of event handling is being ex-

ited; see Figure 16.

"* If a low priority handler is being exited, the
onicond (old network interface condition)

ewe 00 Hm.... bit is copied back into the nicond (network
interface condition) bit.

"* The previous registers (both the scalar set
MOMS* and $vrl) are swapped back into the CPU

0 1 vregister address space.

" The contents of the LPEPC (low prior-

Figure 16: Event State Transition Diagram ity event program counter) or the HPEPC
(high priority event program counter), de-
pending on the priority of the event which
has just been handled, are copied back into
PC.

" If a message arrival handler is being ex-
ited, the KU, (current kernel/user) bit is
restored to the value it had before the han-
dler was entered.

49

A.8 Extensions for Multicast register (nistlat) are read only. They are only
valid within a message handler; they contain aux-

A.S.1 Overview iliary information about the incoming message.

The acet bit indicates whether the incoming mes-
In some applications the operation of distributing sage was multicast (0 - unicast, I ,-, multicast).
identical data from one node to many other nodes
is common. In these cases some hardware support
for multicasting not only allows simpler software,
but also allows for more efficient utilization of the
network resources, leading to better performance.

In this subsection a simple extension to the net-
work interface specification is described; it adds a
mechanism for efficient multicasting. This mech-
anism does not provide fully general multicast ca-
pability; rather, it exposes enough of the underly-
ing hardware's flexibility and performance so that
software libraries may use it in whichever way is
best suited for different communication patterns.

The multicast mechanism simply adds the op-
tion for a send to not only deliver the message
to the destination, but to also deliver a copy of
the message to every node along the path from
the source to the destination. Thus no more net-
work resources are consumed than for the simple
one-to-one send.

A.8.2 Additional State for Multicast

Only one addition is made to the network inter-
face registers. This is the addition of a bit in
the network interface status register indicating
whether or not an incoming message originated
from a multicast send or from a normal (one-to-
one) send. See Figure 17.

15 14 13 1210 9 0
pri I mcst 1 0 1 sla I volen

1 1 1 3 10

Figure 17: Network Interface Status Register For-
mat (with Multicast Extension) - Low 16 Bits

All fields in the low 16 bits of the network status

50

A.J Additfual Instrueftons for Multi- MCSTU Send Multlcast
Cast

31 26 2 24 23 21 2016 1511 106 0The network interface register aces Instructions C OP2 1 10 xL It rd I Q• MCM.
described earlier ae sufficient for dealing with 0o10o 1 10 100100
the multicast extensions. Likewise, no additional 6 2 35 5 6

network Interface branch instructions are needed.
The only area wheo the instruction set has been Format:
extended is for the SEND instructions.

For each of the SEND instructions listed in Sub- MCSTn vd, rd, r

section A.6, a MCST version has been added Description:
which is identical except that it forks a copy of the
message to each intermediate node on the path If the network cannot accept the outgoing mes-
from the sender to the receiver. This path should sage, the nicond (network interface condition) bit
be well defined for each implementation. is cleared and the instruction is aborted.

On the following pages, the MCST versions of the If the network can accept the outgoing message,
SEND instructions are described in detail. the nicond bit is set, and the message is con-

structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and also by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have low priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:

Coprocessor unusable exception.

Coprocessor Exceptions:

Handler address exception.

51

MCSTn.V Send Multicast w/ Vector MCSTnH Send High Priority Multicast

31 26 25324 23 21 20 16 15 11 10 6 5 0 31 26 25 24 23 21 20 16 15 11 10 6 5 0

5x A r d vd MCT.V I CP11 Z I-t li vd CST*Hj
010010 10 x 100110 010010 10 I I o 100101

6 2 3 5 5 5 6 6 2 3 5 5 5 6

Format: Format:

MCSTn.V vd, rd, rt MCSTnH vd, rd, rt

Description: Description:

If the network cannot accept the outgoing mes- If the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted. is cleared and the instruction is aborted.

If the network can accept the outgoing message, If the network can accept the outgoing message,
the nicond bit is set, and the message is con- the nicond bit is set, and the message ih con-
structed and sent. The contents of rt are used as structed and sent. The contents of ri are used as
the address of the handler for the message. The the address of the handler for the message. The
contents of rd specify the destination processor contents of rd specify the destination processor
for the message in an implementation-dependent for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6, way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the $7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not message. Encodings with n greater than 5 are not
valid instructions. valid instructions.

The message will be received at the destination The message will be received at the destination
node and also by every intermediate node on the node and also by every intermediate node on the
path from the source to the destination. The path path from the source to the destination. The path
is determined by the implementation. is determined by the implementation.

The message will have low priority. The message will have high priority.

Although this instruction may take multiple cy- Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can- cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution, not occur in the middle of its execution.

Exceptions: Exceptions:

Coprocessor unusable exception. Coprocessor unusable exception.

Coprocessor Exceptions: Coprocessor Exceptions:

Handler address exception. Handler address exception.

52

i A.-fs&i~-

MOWftu.V Bond High Pr1oft Multicast
w/ Vfctor

31 26 254 2321 20 16 1511 106 S 0Co,2 ,~1 .1 d I vd MCII
010010 0 100111

6 2 $ 5 5 5 6

Format:

MCSTnH.V vd, rd, rt

Description:

N the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted.

If the network can accept the outgoing message,
the nicond bit is set, and the message is con-
structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and also by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:

Coprocessor unusable exception.

Coprocessor Exceptions:

Handler address exception.

53

A.9 Events A.9.1 Message Arrival Events

E ue asynchronously interrupt the ongoing A message arrival event is caused when a mes-

computation and cause the invocation of a han- sage has been completely received into the net-
dier. In this way they are similar to standard work interface. At this point several things occur

interrupts, but the event mechanism is different as control is transferred to the handler:
from the interrupt mechanism in many ways.

* The address of the next instruction to be
There are currently three types of events defined: executed when normal processing resumes
message arrival events, outlet events, and timelet after the event has been serviced is stored
events. Events are also classified as either high in the LPEPC register if it is a low priority
priority or low priority. The arrival of a high message or is stored in the HPEPC register
priority message is the only high priority event, if it is a high priority message. In the case
Outlets, timelets, and arrivals of low priority mes- that this instruction would be a branch de-
sages are all low priority events, lay slot, the address of the previous branch

In general, only one level of event handling is al- instruction is instead stored.

lowed. If while one event is being serviced another If the message has low priority, the LPEE
event occurs, the latter event will wait until the bit in the network interface status word
earlier event has completed its handling. This en- is cleared, preventing further low priority
forced using the LPEE (low priority event enable) events from occurring.
bit in the network interface status word.

eexception to this is that a high priority event If the message has high priority, the EE
The ebit in the network interface status word is
will preempt the handling of a low priority event, cleared, preventing any further events from
In this case two levels of event handling are al- occurring.
lowed. To support these two levels of events,
there are two different register event sets in addi- 9 The vector data component of the incom-
tion to the normal register set (see Figure 1). A ing message, if present, is transferred into
high priority event cannot preempt the handling the appropriate copy of vector unit register
of another high priority event. This is enforced $vrl. This register is then swapped into the
using the EE (event enable) bit in the network vector unit address space so that it is acces-
interface status word. sible (in agreement with the new setting of

EEand LPEE).
In the case where two low priority events oc-

cur simultaneously, or when multiple low priority * The scalar data component of the incom-
events are waiting at the completion of the han- ing message is transferred into the appropri-
dling of another event, a fixed ordering decides ate event set registers (either low priority or
which event gets handled. Message arrival events high priority) in the CPU, and these event
get handled first, then timelet events, and finally set registers are swapped into the CPU reg-
outlet events get handled only when no other un- ister address space, specifically at addresses
masked events are pending. $4-$7 and $29 (see Figure 1). The normal

copy of these registers cannot be accessed
For all events, after handling has been completed, within the handler.
the previously ongoing execution is resumed by
the execution of the HRET instruction (see Sub- e Two event set temporary registers'are also
section A.7). swapped into the CPU register space at ad-

54

dresses $8 and *9. The contents of the nor- A.9.2 Outlet Events
mal registers $8 and $9 cannot be accessed.
See Figure 1. The contents of the event An outlet event is triggered when the op (outlet
set temporary registers are preserved acros pending) and the am (outlet mask) bits in the net-
handler invocations, work interface status word are both set, and low

* If the message has low priority, the nicond priority events are enabled. The op bit is set if

(network interface condition) bit in the net- and only if the network interface can accept a low

work interface status word is saved into the priority message from the CPU.

onicond (old network interface condition) The outlet mechanism facilitates background
bit. (It is not necessary to preserve the data transfers and eliminates the need to poll
nicond bit for a high priority message since the op bit in the network interface status word.
a high priority event handler should not An outlet handler must send a message or disable
attempt to send any messages; if it does, outlet events; otherwise outlet events will occur
it is responsible for saving and restoring endlessly.
nicond.)

When an outlet event occurs, several things hap-*The KU0 (current kernel/user) bit is saved, pen:

then set or cleared according to whether the
sending node was in kernel or user modewhend tneomessde was in lorosed. m The address of the next instruction to bewhen the message was composed. executed when processing resumes after the

* If Active Messages are enabled, the address outlet event has been serviced is stored in
of the handier specified in the message is the LPEPC register. In the case that this
loaded into the PC so that control is trans- instruction would be a branch delay slot,
ferred to the handler. If Active Messages the address of the previous branch instruc-
are disabled, the contents of the dub (de- tion is instead stored.
fault message handier) register are loaded * The LPEE (low priority event enable) bit in
into the PC. the network interface status word is cleared,

preventing further low priority events from
occurring.

"* The low priority event set registers are
swapped into CPU register address space at
$4-49, $29 (the normal contents of these
registers cannot be accessed within the han-
dler). The contents of $4-$7 and $29 are
unpredictable, while the contents of $8 and
$9 are preserved across handier invocations.
None of these registers have to be preserved
by the handler, speeding the process of mes-
sage composition. See Figure 1.

"• The low priority event copy of *vrl is
swapped into the vector unit address space,
with unpredictable initial contents. Its con-
tents do not have to be preserved, making
it useful for composing vector messages.

55

* The address of the outlet handler, spec- A.9.3 Timelet Events
fled in the outh network interface register,
is jammed Into the PC so that control is A timelet event occurs when both the tp (timelet
transferred to the handler. pending) and the tu (timelet mask) bits are set,

* The nicond (network interface condition) and low priority events are enabled. The tp bit
bit in the network interface status word in gets set when the value in the Count register is
saved into the onicond (old network inter- the same as the value in the Timelet Compare
face condition) bit. (tizec) register. The tp bit gets cleared either

when a timelet event occurs or when the tinec

register is written.

When a timelet event occurs, the following things
happen as control is transferred to the handler:

" The address of the next instruction to be
executed when processing resumes after the
outlet event has been serviced is stored in
the LPEPC register. In the case that this
instruction would be a branch delay slot,
the address of the previous branch instruc-
tion is instead stored.

" The LPEE (low priority event enable) bit in
the network interface status word is cleared,
preventing further low priority events from
occurring.

"* The tp (timelet pending) bit is cleared.

"* The low priority event set registers are
swapped into CPU register address space at
$4-$9, $29 (the normal contents of these
registers cannot be accessed within the han-
dler). The contents of $4-47 and $29 are
unpredictable, while the contents of $8 and
$9 are preserved across handier invocations.
None of these registers have to be preserved
by the handler, speeding the process of mes-
sage composition. See Figure 1.

" The low priority event copy of $vrl is
swapped into the vector unit address space,
with unpredictable initial contents. Its con-
tents do not have to be preserved, making
it useful for composing vector messages.

" The address of the outlet handier, specified
in the titmeh network interface register, is

56

, , Jammed ko the PC m thlf mtra is trams-
lured to the aadlhr.

* The ,,coad (aestwak labhm condition)
bit ia the network laterfac AtUs word is
sved into the oascand (old etwork inater-

face condition) bit.

57

A.10 Usage Notes third instruction after the CTC2 instruc-
tion.

Network Behavior * There must be one instruction between a
SEND instruction sad a BC2F/BC2T in-

Messae In the network are guaranteed to be de- struction which tests its success.

livered in order. If processor A wads a number * There must be two instructions between a
of mesages to processor B, it is not possible that CTC2 instruction sad a network interface
processor B may receive those messages in a dif- branch instruction which tests a bit affected
ferent order than they were seat from processor A. by the CTC2.

The lowest level of low control between two pro-
cesors operates as follows: if messages arrive at An implementation may implement bypassing be-
a node faster than the node processes them, the tween network interface control registers and the
messages will start to back up in various buffers CPU registers, in which case the above hazards
along the paths) between the sending node(s) and to not exist.
the receiving node. Once the messages back up
all the way to the network interface of a send-
ing node, the sending processor will be prevented Typical Send Sequence
from sending any more messages: the lpa/hpa bit
will be cler, and any SEND attempt will result The availability of the network may be polled
in the nicond (network interface condition) bit by looking at the appropriate bit in the network
being clear, indicating that the attempt failed. interface status register. Once it is determined

This describes what occurs considering messages that the network is available, a SEND can be at-

of only one priority level. Even if the low priority tempted. In general, the success of the SEND

network is backed up with messages, high priority must still be checked using the BC2T/BC2F in-

messages can still get through (unless the high structions. This is because an asynchronous event

priority network is also backed up). or interrupt may occur between the poll and the
SEND, and the invoked handler may execute a
SEND of its own, causing the network to become

Hazards unavailable.

If it is known that the SEND will likely succeed,
Because there might not be any bypassing be- the SEND can be tried directly without polling
tween network interface control registers and the the network first. However, a failed SEND / check
CPU registers, there is an exposed hazard involv- for success sequence will likely consume more cy-
ing data transfers between them. The following is des than the four required for a poll.
a Hst of hazards which are due to transfer delays.

Between a SEND and the check of success, an

"* For a CFC2 instruction, the data being event or interrupt may occur. If this event or in-
tFransferd to itheCPUregister isotaveil- terrupt performs a SEND, the nicond bit will be
tansered u tol the secPd rinsterutisono avf , t overwritten. In the case of a low priority event,
able until the second instruction after the the nicond bit is automatically saved to onicond
CFC2 instruction, at the beginning of the event handler and restored

"* For a CTC2, any changes in the network at the end of the handler, so the information is

interface state will not take effect until the not lost. However, an interrupt or high priority
event handler which performs a SEND will have

58

A4*

to preserve the nicoad bit by reading and isv- EE LPEE Register Set Visible
lag the network Interface status word before the 1 1 Normal set

SEND sand then restoring It after the SEND. 1 0 Low priority event set0 1 High priority event setF~re IS shows a simple sequence showing a poll 0 . 0 1High priorit.y event set

/ sd / check for success sequene

Note that when the low priority event set is vis-

CFC2 $1, Onistat % got nistat ble from normal code, low priority events are dis-
N abled. When the high priority event set is visible
%---shift ipa bit to siga bit- from normal code, all events are disabled.
SLL $1. $1, 14

-- breanch if siln bit Is set-
ULTZ $1, Iandit
%---otherwise coutinue-

Seeadit: <prepare data in $4-$?. *29>
<move address of handler into *$>
<sovy identifier of destination into $9>
<load vector data into Svr4>
SE. .V *8, $9, $vr4
NOP
DC2F SsendJfail

Figure 18: Example showing some network interface
instructions

Initialization of Event Set Registers

In general, the event set registers are only acces-
sible from within event handlers. However, it is
often useful to initialize event set registers $8 and
$9 from within the main code segment prior to the
invocation of any handlers. To facilitate this, we
have made the visibility of the registers controlled
by the setting of the LPEE/EE bits. These bits are
normally set and reset as side effects of entering
and exiting event handlers, but they can also be
changed manually (by writing to the network in-
terface status register) from normal code.

LPEK and EE control the visibility of the event set
registers as follows:

59

Active Meanages waiting to send a low priority message (although
it is allowed to loop waiting to send a high priority

For the background, motivation, and advantage_ message). A handler for a high priority message is
of Active Messages, refer to not allowed to wait to send any kind of message.

As an example, consider the typica usage of out-
Thorsten von Elcken, David E. Culler, let events: background data transfer. It is desir-
Seth Copen Goldstein, Klaws Erik able to use low priority transfer for these large
Schauser. "Active Messages: a Mech- data transfers, so that they do not interfere with
arism for Integrated Communication time-critical communications such as barrier syn-and Computationt , in Proeedings n o chronizations. In fact, outlets are designed forthe 19 pt Interaona- iSnproednum on sending low priority messages, since they are trig-
Computer Architecture, May 1992. gered by the low priority network being willing to

accept an outgoing message. But since an outlet
handler is a low priority handler, isn't it a bad

To quote from this paper, idea to send a low priority message from within
it? No, not as long as the processor doesn't busy

Active Messages is an asynchronous wait while trying to send the message. The typ-
communication mechanism intended ical outlet handler should look like this (notice

to expose the full hardware tleadbil- that there is ..., looping):
ity and performance of modern inter-
connection networks. The underlying attempt low priority send of data block
idea is simple: each message contains was it successful?
at its head the address of a user-level yes: update pointer or queue
handler which is executed on message no: don't update state
arrival with the message body as ar- return from handler
gument. The role of the handler is
to get the message out of the net-
work and into the computation ongo-
ing on the processing node. The han- Usually the send will succeed, since what set the
dler must execute quickly and to com- outlet pending bit in the first place was that the
pletion. network interface had room to accept another

message.

Some restrictions are placed on what handlers
are allowed to do, for performance and deadlock
avoidance reasons. Handlers should not perform
serious computation; they should perform oper-
ations on the order of placing data into buffers,
queuing up work for the primary computation, or
replying to a remote memory fetch.

Fbr request-reply exchanges such as "get" mem-
ory operations, the request must be a low prior-
ity message and the reply must be a high priority
message in order to avoid deadlock. In general, a
low priority event handler is not allowed to loop

60

